Convergence theorems and stability results for Lipschitz strongly pseudocontractive operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Fixed Point Sequences and Convergence Theorems for Lipschitz Pseudocontractive Maps

Let K be a nonempty closed convex subset of a real Banach space E and T be a Lipschitz pseudocontractive self-map of K with F (T ) := {x ∈ K : Tx = x} 6= ∅. An iterative sequence {xn} is constructed for which ||xn − Txn|| → 0 as n → ∞. If, in addition, K is assumed to be bounded, this conclusion still holds without the requirement that F (T ) 6= ∅. Moreover, if, in addition, E has a uniformly G...

متن کامل

Convergence Analysis of an Iteration Scheme for Lipschitz Strongly Pseudocontractive Mappings

CONVERGENCE ANALYSIS OF AN ITERATION SCHEME FOR LIPSCHITZ STRONGLY PSEUDOCONTRACTIVE MAPPINGS Shin Min Kang Department of Mathematics, Gyeongsang National University, Jinju 660-701, KOREA [email protected] Arif Rafiq Hajvery University, 43-52 Industrial Area, Gulberg-III, Lahore, Pakistan [email protected] ABSTRACT In this paper, we establish the strong convergence for the Agarwal et al. [1] ite...

متن کامل

Strong convergence theorems for maximal monotone operators and continuous pseudocontractive mappings

We introduce a new iterative algorithm for finding a common element of the solution set of the variational inequality problem for a continuous monotone mapping, the zero point set of a maximal monotone operator, and the fixed point set of a continuous pseudocontractive mapping in a Hilbert space. Then we establish strong convergence of the sequence generated by the proposed algorithm to a commo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences

سال: 2002

ISSN: 0161-1712,1687-0425

DOI: 10.1155/s0161171202112257